The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
Article Details
- CitationCopy to clipboard
Cheng Z, Arscott LD, Ballou DP, Williams CH Jr
The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
Biochemistry. 2007 Jul 3;46(26):7875-85. Epub 2007 Jun 6.
- PubMed ID
- 17550271 [ View in PubMed]
- Abstract
Thioredoxin reductase from Drosophila melanogaster (DmTrxR) catalyzes the reversible transfer of reducing equivalents between NADPH and thioredoxin (Trx), a small protein that is involved in a wide variety of biological redox processes. The catalysis involves three essential redox states of the enzyme: the oxidized form of DmTrxR (Eox), the 2-electron-reduced forms (EH2), and the 4-electron-reduced forms (EH4). In the present work, the macroscopic redox potentials of Eox/EH2 and EH2/EH4 couples were determined to be -272 +/- 5 mV for Em(Eox/EH2) and -298 +/- 11 mV for Em(EH2/EH4) on the basis of redox equilibria between DmTrxR and NADH. The value for Em(EH2/EH4) obtained from the steady-state kinetics of the TrxR-catalyzed reaction between NADPH and D. melanogaster Trx-2 (DmTrx-2) was reasonably consistent with that based on redox equilibria. The redox potential of the Trx-(S)2/Trx-(SH)2 couple from D. melanogaster Trx-2 (DmTrx-2) was calculated to be -275.4 +/- 0.3 mV by using the Nernst equation and the Keq for the equilibrium of the reaction involving NADP/NADPH and Trx-(S)2/Trx-(SH)2. For the accurate determination of the Keq, an improved protocol has been developed to minimize errors that can be introduced by using starting concentrations far from equilibrium of the TrxR-catalyzed reaction between NADPH and Trx. This improved approach gives an Em of -284.2 +/- 1.0 mV for Escherichia coli Trx and -271.9 +/- 0.4 mV for Plasmodium falciparum Trx, which agree well with published values (-283 or -285 mV and -270 mV, respectively). The redox potentials determined herein provide further direct evidence for the proposed catalytic mechanism of DmTrxR, and cast new light on the essential role of the DmTrx system in cycling GSSG/GSH and maintaining the intracellular redox homeostasis in D. melanogaster where glutathione reductase is absent.
DrugBank Data that Cites this Article
- Drug Targets
Drug Target Kind Organism Pharmacological Action Actions NADH Glutathione reductase, mitochondrial Protein Humans UnknownNot Available Details