Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463.
Article Details
- CitationCopy to clipboard
Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP
Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463.
Chemosphere. 2007 Jun;68(2):394-400. Epub 2007 Feb 9.
- PubMed ID
- 17292452 [ View in PubMed]
- Abstract
Saccharomyces cerevisiae MTCC 463 decolourizes toxic azo dye, methyl red by degradation process. Methyl red (100mgl(-1)) is degraded completely within 16min in plain distilled water under static anoxic condition, at the room temperature. Effect of physicochemical parameters (pH of medium, composition of medium, concentration of cells, concentration of dye, temperature and agitation) on methyl red decolourization focused the optimal condition required for decolourization. Biodegradation (fate of metabolism) of methyl red in plain distilled water was found to be pH dependent. Cells of Saccharomyces cerevisiae could degrade methyl red efficiently up to 10 cycles in plain distilled water. Analysis of samples extracted with ethyl acetate from decolourized culture flasks in plain distilled water (pH 6.5) and at pH 9 using UV-VIS, TLC, HPLC and FTIR confirm biodegradation of methyl red into several different metabolites. A study of the enzymes responsible for the biodegradation of methyl red in the control and cells obtained after decolourization in plain distilled water (pH 6.5) and at pH 9 showed different levels of the activities of laccase, lignin peroxidase, NADH-DCIP reductase, azoreductase, tyrosinase and aminopyrine N-demethylase. A significant increase in the activities of lignin peroxidase and NADH-DCIP reductase was observed in the cells obtained after decolourization in plain distilled water (pH 6.5), however cells obtained at pH 9 shows increased activities of azoreductase, tyrosinase, lignin peroxidase and NADH-DCIP reductase. High efficiency to decolourize methyl red in plain distilled water and low requirement of environmental conditions enables this yeast to be used in biological treatment of industrial effluent containing azo dye, methyl red.
DrugBank Data that Cites this Article
- Drug Targets
Drug Target Kind Organism Pharmacological Action Actions NADH Tyrosinase Protein Humans UnknownNot Available Details