C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells.

Article Details

Citation

Akama K, Takaiwa F

C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells.

J Exp Bot. 2007;58(10):2699-707. Epub 2007 Jun 11.

PubMed ID
17562689 [ View in PubMed
]
Abstract

Glutamate decarboxylase (GAD) converts L-glutamate to gamma-aminobutyric acid (GABA), which is a non-protein amino acid present in all organisms. Plant GADs carry a C-terminal extension that binds to Ca(2+)/calmodulin (CaM) to modulate enzyme activity. However, rice possesses two distinct types of GAD, OsGAD1 and OsGAD2. Although they both have a C-terminal extension, the former peptide contains an authentic CaM-binding domain (CaMBD), which is common to dicotyledonous plants, while the latter does not. Therefore, the role of the C-terminal extension in functional expression of OsGAD2 was investigated. An in vitro enzyme assay using recombinant OsGAD2 proteins revealed low activity in the presence or absence of Ca(2+)/CaM. However, a truncated version of GAD2 (OsGAD2DeltaC) had over 40-fold higher activity than wild-type GAD at physiological pH. These two DNA constructs were introduced simultaneously into rice calli via Agrobacterium to establish transgenic cell lines. Free amino acids were isolated from several lines for each construct to determine GABA content. Calli overexpressing OsGAD2 and OsGAD2DeltaC had about 6-fold and 100-fold the GABA content of wild-type calli, respectively. Regenerated OsGAD2DeltaC rice plants had aberrant phenotypes such as dwarfism, etiolated leaves, and sterility. These data suggest that the C-terminal extension of OsGAD2 plays a role as a strong autoinhibitory domain, and that truncation of this domain causes the enzyme to act constitutively, with higher activity both in vitro and in vivo.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Glutamic acidGlutamate decarboxylase 1ProteinHumans
Unknown
Not AvailableDetails