Decrease in N-methyl-D-aspartic acid receptor-NR2B subunit levels by intrathecal short-hairpin RNA blocks group I metabotropic glutamate receptor-mediated hyperalgesia.
Article Details
- CitationCopy to clipboard
Gabra BH, Kessler FK, Ritter JK, Dewey WL, Smith FL
Decrease in N-methyl-D-aspartic acid receptor-NR2B subunit levels by intrathecal short-hairpin RNA blocks group I metabotropic glutamate receptor-mediated hyperalgesia.
J Pharmacol Exp Ther. 2007 Jul;322(1):186-94. Epub 2007 Apr 3.
- PubMed ID
- 17405869 [ View in PubMed]
- Abstract
The present study characterizes the involvement of the N-methyl-D-aspartic acid receptors (NMDARs) in mediating thermal hyperalgesia induced by activation of group I metabotropic glutamate receptors (mGluRs). Intrathecal administration of the mGluR1/5 agonist (S)-3,5-DHPG [(S)-3,5-dihydroxyphenylglycine] to mice resulted in significant hyperalgesia as assessed by the tail immersion test. The pretreatment of mice i.t. with CGS 19755 (selective antagonist of the NMDAR), CGP 78608 [[(1S)-1-[[(7-bromo-1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]amino]ethy l]phosphonic acid] (selective antagonist at the glycine-binding site of the NMDAR), ifenprodil and Ro 25-6981 (selective antagonists of the NR2B subunit of the NMDAR), bisindolylmaleimide I and Go-7874 [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3 ,4-c)-carbazole] (inhibitors of protein kinase C), or PKI-(14-22)-amide [Myr-N-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile-NH(2)] (inhibitor of protein kinase A) dose-dependently inhibited the hyperalgesia induced by i.t. administration of the mGluR1/5 receptor agonist (S)-3,5-DHPG. In contrast, i.t. pretreatment of mice with NVP-AAM077 [[(R)-[(S)-1-(4-bromophenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin- 5-yl)-methyl]-phosphonic acid] (selective antagonist of the NR2A subunit of the NMDAR) or DT-3 [H-Arg-Gln-Ile-Lys-Ile-Trp-Phe-Gln-Asn-Arg-Arg-Met-Lys-Trp-Lys-Lys-Leu-Arg-Lys-Ly s-Lys-Lys-Lys-His-OH] (inhibitor of protein kinase G) had no effect on (S)-3,5-DHPG-mediated hyperalgesia. We also show for the first time that i.t. injection of pSM2 (pShag Magic version 2)-grin2b (coding for an short-hairpin RNA to the NR2B subunit of the NMDAR) resulted in a dose-dependent decrease in the NR2B protein and blockade of hyperalgesia induced by activation of the mGluR1/5 in (S)-3,5-DHPG-treated mice. Taken together, our results suggest the hypothesis that mGluRs are coupled to the NMDAR channels through the NR2B subunit in the spinal cord and that this coupling involves the activation of protein kinase C and protein kinase A.
DrugBank Data that Cites this Article
- Drug Targets
Drug Target Kind Organism Pharmacological Action Actions Glycine Glutamate receptor ionotropic, NMDA 2A Protein Humans UnknownAntagonistDetails