Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport.
Article Details
- CitationCopy to clipboard
Heijn M, Hooijberg JH, Scheffer GL, Szabo G, Westerhoff HV, Lankelma J
Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport.
Biochim Biophys Acta. 1997 May 22;1326(1):12-22.
- PubMed ID
- 9188796 [ View in PubMed]
- Abstract
We studied the ATP-dependent uptake of dinitrophenyl-glutathione (GS-DNP) into plasma membrane vesicles derived from parental GLC4 cells and from multidrug resistant GLC4/ADR cells. The latter have a high expression of the multidrug resistance protein (MRP). Uptake of GS-DNP into membrane vesicles from GLC4/ADR cells was highly stimulated by the addition of ATP, compared to the uptake into membrane vesicles from GLC4 cells. This ATP-dependent uptake into membrane vesicles from GLC4/ADR cells was saturable with a Km of 1.2 +/- 0.2 microM and a Vmax of 560 +/- 80 pmol/mg prot./min. ATP stimulated GS-DNP uptake with a Km of 187 +/- 4 microM. This uptake was specifically inhibited by a polyclonal serum raised against a fusion protein containing a segment of MRP. The ATP-dependent uptake of GS-DNP was not only inhibited by organic anions, such as oxidized glutathione (GSSG), methotrexate (MTX) and some bile acids, but also by non-anionic natural product drugs, such as anthracyclines, vinca alkaloids and etoposide (VP-16). Uptake of GSSG and MTX into membrane vesicles from GLC4/ADR cells could be stimulated by ATP. The ATP-dependent uptake of GSSG had a Km of 43 +/- 3 microM and a Vmax of 900 +/- 200 nmol/mg protein/min. The ATP-dependent uptake of GS-DNP seemed to be non-competitively inhibited by the anthracycline daunorubicin (DNR), whereas the ATP-dependent GSSG uptake seemed to be competitively inhibited by DNR. A substrate binding site on MRP is proposed that comprises a pocket in which both DNR and GS-DNP or GSSG bind in random order to different, only partly overlapping sites. In this pocket binding of a second compound is influenced by the compound which was bound first.
DrugBank Data that Cites this Article
- Drug Transporters
Drug Transporter Kind Organism Pharmacological Action Actions Daunorubicin Multidrug resistance-associated protein 1 Protein Humans UnknownSubstrateInhibitorDetails Etoposide Multidrug resistance-associated protein 1 Protein Humans UnknownSubstrateInhibitorDetails Glutathione Multidrug resistance-associated protein 1 Protein Humans UnknownSubstrateInhibitorDetails Idarubicin Multidrug resistance-associated protein 1 Protein Humans UnknownInhibitorDetails Methotrexate Multidrug resistance-associated protein 1 Protein Humans UnknownSubstrateInhibitorDetails Paclitaxel Multidrug resistance-associated protein 1 Protein Humans UnknownInhibitorDetails Taurocholic acid Multidrug resistance-associated protein 1 Protein Humans UnknownInhibitorInducerDetails - Binding Properties
Drug Target Property Measurement pH Temperature (°C) Daunorubicin Multidrug resistance-associated protein 1 Ki (nM) 950 N/A N/A Details