Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies.
Article Details
- CitationCopy to clipboard
Colotta V, Lenzi O, Catarzi D, Varano F, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Pugliese AM, Traini C, Pedata F, Morizzo E, Moro S
Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies.
J Med Chem. 2009 Apr 23;52(8):2407-19. doi: 10.1021/jm8014876.
- PubMed ID
- 19301821 [ View in PubMed]
- Abstract
The paper describes a new class of human (h) A(3) adenosine receptor antagonists, the 2-arylpyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one derivatives (PTP), either 4-oxo (1-6, series A) or 4-amino-substituted (7-20, series B). In both series A and B, substituents able to act as hydrogen bond acceptors (OMe, OH, F, COOEt) were inserted on the 2-phenyl ring. In series B, cycloalkyl and acyl residues were introduced on the 4-amino group. Some of the new derivatives showed high hA(3) AR affinities (K(i) < 50 nM) and selectivities vs both hA(1) and hA(2A) receptors. The selected 4-benzoylamino-2-(4-methoxyphenyl)pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-on e (18), tested in an in vitro rat model of cerebral ischemia, proved to be effective in preventing the failure of synaptic activity induced by oxygen and glucose deprivation in the hippocampus. Molecular docking of this new class of hA(3) AR antagonists was carried out to depict their hypothetical binding mode to our refined model of hA(3) receptor.
DrugBank Data that Cites this Article
- Binding Properties
Drug Target Property Measurement pH Temperature (°C) Theophylline Adenosine receptor A1 Ki (nM) 6200 N/A N/A Details Theophylline Adenosine receptor A2a Ki (nM) 7900 N/A N/A Details