Significant sensitivity improvements by matrix optimization: a MALDI-TOF mass spectrometric study of lipids from hen egg yolk.

Article Details

Citation

Teuber K, Schiller J, Fuchs B, Karas M, Jaskolla TW

Significant sensitivity improvements by matrix optimization: a MALDI-TOF mass spectrometric study of lipids from hen egg yolk.

Chem Phys Lipids. 2010 Jun;163(6):552-60. doi: 10.1016/j.chemphyslip.2010.04.005. Epub 2010 Apr 24.

PubMed ID
20420816 [ View in PubMed
]
Abstract

Due to its sensitivity, the tolerance of impurities and the simplicity of performance, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is increasingly used to analyze lipids from biological sources. Although its detailed role is not understood so far, the applied matrix has a pronounced effect on the achievable spectrum quality and particularly how sensitive the individual lipid classes are detectable. Different matrix compounds were recently established in the lipid field including 2,5-dihydroxybenzoic acid (DHB), 9-aminoacridine (9-AA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), and 2-(2-aminoethylamino)-5-nitropyridine (AAN). It is the aim of this paper to compare the properties of these matrices with the newly synthesized matrix, alpha-cyano-2,4-difluorocinnamic acid (Di-FCCA). An organic extract from hen egg yolk was used as a simple and easily available test system. It will be shown that Di-FCCA is the matrix of choice to detect lipids in the positive-ion mode due to an achievable sensitivity gain of more than one order of magnitude compared to alternative matrices. In contrast, Di-FCCA is not suitable for negative-ion detection of phospholipids. Here, 9-AA is unequivocally the matrix of choice.

DrugBank Data that Cites this Article

Drugs