D-glucose stimulation of L-arginine transport and nitric oxide synthesis results from activation of mitogen-activated protein kinases p42/44 and Smad2 requiring functional type II TGF-beta receptors in human umbilical vein endothelium.
Article Details
- CitationCopy to clipboard
Vasquez R, Farias M, Vega JL, Martin RS, Vecchiola A, Casanello P, Sobrevia L
D-glucose stimulation of L-arginine transport and nitric oxide synthesis results from activation of mitogen-activated protein kinases p42/44 and Smad2 requiring functional type II TGF-beta receptors in human umbilical vein endothelium.
J Cell Physiol. 2007 Sep;212(3):626-32.
- PubMed ID
- 17427197 [ View in PubMed]
- Abstract
Elevated extracellular D-glucose increases transforming growth factor beta1 (TGF-beta1) release from human umbilical vein endothelium (HUVEC). TGF-beta1, via TGF-beta receptors I (TbetaRI) and TbetaRII, activates Smad2 and mitogen-activated protein kinases p44 and p42 (p42/44(mapk)). We studied whether D-glucose-stimulation of L-arginine transport and nitric oxide synthesis involves TGF-beta1 in primary cultures of HUVEC. TGF-beta1 release was higher ( approximately 1.6-fold) in 25 mM (high) compared with 5 mM (normal) D-glucose. TGF-beta1 increases L-arginine transport (half maximal effect approximately 1.6 ng/ml) in normal D-glucose, but did not alter high D-glucose-increased L-arginine transport. TGF-beta1 and high D-glucose increased hCAT-1 mRNA expression ( approximately 8-fold) and maximal transport velocity (V(max)), L-[(3)H]citrulline formation from L-[(3)H]arginine (index of NO synthesis) and endothelial NO synthase (eNOS) protein abundance, but did not alter eNOS phosphorylation. TGF-beta1 and high D-glucose increased p42/44(mapk) and Smad2 phosphorylation, an effect blocked by PD-98059 (MEK1/2 inhibitor). However, TGF-beta1 and high D-glucose were ineffective in cells expressing a truncated, negative dominant TbetaRII. High D-glucose increases L-arginine transport and eNOS expression following TbetaRII activation by TGF-beta1 involving p42/44(mapk) and Smad2 in HUVEC. Thus, TGF-beta1 could play a crucial role under conditions of hyperglycemia, such as gestational diabetes mellitus, which is associated with fetal endothelial dysfunction.
DrugBank Data that Cites this Article
- Drug Targets
Drug Target Kind Organism Pharmacological Action Actions Arginine High affinity cationic amino acid transporter 1 Protein Humans UnknownNot Available Details